
Interactive Input Methods and
Graphical User Interfaces

1 Graphical Input Data

2 Logical Classification of Input Devices

3 Input Functions for Graphical Data

4 Interactive Picture-Construction
Techniques

5 Virtual-Reality Environments

6 OpenGL Interactive Input-Device
Functions

7 OpenGL Menu Functions

8 Designing a Graphical User Interface

9 Summary

A lthough we can construct programs and provide input data

using the methods and program commands discussed in the

previous chapters, it is often useful to be able to specify

graphical input interactively. During the execution of a program, for

example, we might want to change the position of the camera or the

location of an object in a scene by pointing to a screen position, or

we might want to change animation parameters using menu selec-

tions. In design applications, control-point coordinates for spline con-

structions are chosen interactively, and pictures are often constructed

using interactive painting or drawing methods. There are several

kinds of data that are used by a graphics program, and a variety

of interactive input methods have been devised for processing these

data values. In addition, interfaces for systems now involve extensive

interactive graphics, including display windows, icons, menus, and a

mouse or other cursor-control devices.

From Chapter of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

20 .

591

1 Graphical Input Data
Graphics programs use several kinds of input data, such as coordinate positions,
attribute values, character-string specifications, geometric-transformation val-
ues, viewing conditions, and illumination parameters. Many graphics packages,
including the International Standards Organization (ISO) and American
National Standards Institute (ANSI) standards, provide an extensive set of
input functions for processing such data. But input procedures require interaction
with display-window managers and specific hardware devices. Therefore, some
graphics systems, particularly those that provide mainly device-independent
functions, often include relatively few interactive procedures for dealing with
input data.

A standard organization for input procedures in a graphics package is to
classify the functions according to the type of data that is to be processed by each
function. This scheme allows any physical device, such as a keyboard or a mouse,
to input any data class, although most input devices can handle some data types
better than others.

2 Logical Classification of Input Devices
When input functions are classified according to data type, any device that is used
to provide the specified data is referred to as a logical input device for that data
type. The standard logical input-data classifications are

LOCATOR A device for specifying one coordinate position.
STROKE A device for specifying a set of coordinate positions.
STRING A device for specifying text input.
VALUATOR A device for specifying a scalar value.
CHOICE A device for selecting a menu option.
PICK A device for selecting a component of a picture.

Locator Devices
Interactive selection of a coordinate point is usually accomplished by positioning
the screen cursor at some location in a displayed scene, although other meth-
ods, such as menu options, could be used in certain applications. We can use
a mouse, touchpad, joystick, trackball, spaceball, thumbwheel, dial, hand cur-
sor, or digitizer stylus for screen-cursor positioning. In addition, various but-
tons, keys, or switches can be used to indicate processing options for the selected
location.

Keyboards are used for locator input in several ways. A general-purpose
keyboard usually has four cursor-control keys that move the screen cursor up,
down, left, and right. With an additional four keys, we can move the cursor
diagonally as well. Rapid cursor movement is accomplished by holding down
the selected cursor key. Sometimes a keyboard includes a touchpad, joystick,
trackball, or other device for positioning the screen cursor. For some applications,
it may also be convenient to use a keyboard to type in numerical values or other
codes to indicate coordinate positions.

Other devices, such as a light pen, have also been used for interactive
input of coordinate positions. But light pens record screen positions by detect-
ing light from the screen phosphors, and this requires special implementation
procedures.

Interactive Input Methods and Graphical User Interfaces

592

Stroke Devices
This class of logical devices is used to input a sequence of coordinate positions,
and the physical devices used for generating locator input are also used as stroke
devices. Continuous movement of a mouse, trackball, joystick, or hand cursor
is translated into a series of input coordinate values. The graphics tablet is one
of the more common stroke devices. Button activation can be used to place the
tablet into “continuous” mode. As the cursor is moved across the tablet surface,
a stream of coordinate values is generated. This procedure is used in paintbrush
systems to generate drawings using various brush strokes. Engineering systems
also use this process to trace and digitize layouts.

String Devices
The primary physical device used for string input is the keyboard. Character
strings in computer-graphics applications are typically used for picture or graph
labeling.

Other physical devices can be used for generating character patterns for spe-
cial applications. Individual characters can be sketched on the screen using a
stroke or locator-type device. A pattern recognition program then interprets the
characters using a stored dictionary of predefined patterns.

Valuator Devices
We can employ valuator input in a graphics program to set scalar values for
geometric transformations, viewing parameters, and illumination parameters. In
some applications, scalar input is also used for setting physical parameters such
as temperature, voltage, or stress-strain factors.

A typical physical device used to provide valuator input is a panel of control
dials. Dial settings are calibrated to produce numerical values within some pre-
defined range. Rotary potentiometers convert dial rotation into a corresponding
voltage, which is then translated into a number within a defined scalar range,
such as −10.5 to 25.5. Instead of dials, slide potentiometers are sometimes used
to convert linear movements into scalar values.

Any keyboard with a set of numeric keys can be used as a valuator device.
Although dials and slide potentiometers are more efficient for fast input.

Joysticks, trackballs, tablets, and other interactive devices can be adapted for
valuator input by interpreting pressure or movement of the device relative to a
scalar range. For one direction of movement, say left to right, increasing scalar
values can be input. Movement in the opposite direction decreases the scalar input
value. Selected values are usually echoed on the screen for verification.

Another technique for providing valuator input is to display graphical rep-
resentations of sliders, buttons, rotating scales, and menus on the video monitor.
Cursor positioning, using a mouse, joystick, spaceball, or other device, can be
used to select a value on one of these valuators. As a feedback mechanism for the
user, selected values are usually displayed in text or color fields elsewhere within
the graphical display belonging to the application.

Choice Devices
Menus are typically used in graphics programs to select processing options,
parameter values, and object shapes that are to be used in constructing a picture.
Commonly used choice devices for selecting a menu option are cursor-positioning
devices such as a mouse, trackball, keyboard, touch panel, or button box.

Keyboard function keys or separate button boxes are often used to enter
menu selections. Each button or function key is programmed to select a particular

Interactive Input Methods and Graphical User Interfaces

593

operation or value, although preset buttons or keys are sometimes included on
an input device.

For screen selection of listed menu options, we use a cursor-positioning
device. When a screen-cursor position (x, y) is selected, it is compared to the
coordinate extents of each listed menu item. A menu item with vertical and hori-
zontal boundaries at the coordinate values xmin, xmax, ymin, and ymax is selected if
the input coordinates satisfy the inequalities

xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax (1)

For larger menus with relatively few options displayed, a touch panel is com-
monly used. A selected screen position is compared to the coordinate extents of
the individual menu options to determine what process is to be performed.

Alternate methods for choice input include keyboard and voice entry. A stan-
dard keyboard can be used to type in commands or menu options. For this method
of choice input, some abbreviated format is useful. Menu listings can be numbered
or given short identifying names. A similar encoding scheme can be used with
voice input systems. Voice input is particularly useful when the number of options
is small (20 or fewer).

(x, y)

d1

d2

F I G U R E 1
Distances to line segments from a pick
position.

Pick Devices
We use a pick device to select a part of a scene that is to be transformed or edited
in some way. Several different methods can be used to select a component of a
displayed scene, and any input mechanism used for this purpose is classified as a
pick device. Most often, pick operations are performed by positioning the screen
cursor. Using a mouse, joystick, or keyboard, for example, we can perform picking
by positioning the screen cursor and pressing a button or key to record the pixel
coordinates. This screen position can then be used to select an entire object, a facet
of a tessellated surface, a polygon edge, or a vertex. Other pick methods include
highlighting schemes, selecting objects by name, or a combination of methods.

Using the cursor-positioning approach, a pick procedure could map a selected
screen position to a world-coordinate location using the inverse viewing and
geometric transformations that were specified for the scene. Then, the world-
coordinate position can be compared to the coordinate extents of objects. If the
pick position is within the coordinate extents of a single object, the pick object
has been identified. The object name, coordinates, or other information about the
object can then be used to apply the desired transformation or editing operations.
But if the pick position is within the coordinate extents of two or more objects,
further testing is necessary. Depending on the type of object to be selected and the
complexity of a scene, several levels of search may be required to identify the pick
object. For example, if we are attempting to pick a sphere whose coordinate extents
overlap the coordinate extents of some other three-dimensional object, the pick
position could be compared to the coordinate extents of the individual surface
facets of the two objects. If this test fails, the coordinate extents of individual line
segments can be tested.

When coordinate-extent tests do not uniquely identify a pick object, the
distances from the pick position to individual line segments could be computed.
Figure 1 illustrates a pick position that is within the coordinate extents of
two line segments. For a two-dimensional line segment with pixel endpoint
coordinates (x1, y1) and (x2, y2), the perpendicular distance squared from a pick
position (x, y) to the line is calculated as

d2 = [�x(y − y1) − �y(x − x1)]2

�x2 + �y2 (2)

Interactive Input Methods and Graphical User Interfaces

594

where �x = x2−x1 and �y = y2−y1. Other methods, such as comparing distances
to endpoint positions, have been proposed to simplify the line-picking operations.

Pick procedures can be simplified if coordinate-extent testing is not carried
out for the surface facets and line segments of an object. When the pick position
is within the coordinate extents of two or more objects, the pick procedures can
simply return a list of all candidate pick objects.

Another picking technique is to associate a pick window with a selected
cursor position. The pick window is centered on the cursor position, as shown in
Figure 2, and clipping procedures are used to determine which objects intersect
the pick window. For line picking, we can set the pick-window dimensions w and
h to very small values, so that only one line segment intersects the pick window.
Some graphics packages implement three-dimensional picking by reconstructing
a scene using the viewing and projection transformations with the pick window
as the clipping window. Nothing is displayed from this reconstruction, but clip-
ping procedures are applied to determine which objects are within the pick view
volume. A list of information for each object in the pick view volume can then
be returned for processing. This list can contain information such as object name
and depth range, where the depth range could be used to select the nearest object
in the pick view volume.

h

w

(xp, yp)

F I G U R E 2
A pick window with center coordinates
(x p , y p) , width w, and height h.

Highlighting can also be used to facilitate picking. One way to do this is to
successively highlight those objects whose coordinate extents overlap a pick posi-
tion (or pick window). As each object is highlighted, a user could issue a “reject”
or “accept” action using keyboard keys. The sequence stops when the user accepts
a highlighted object as the pick object. Picking could also be accomplished simply
by successively highlighting all objects in the scene without selecting a cursor
position. The highlighting sequence can be initiated with a button or function
key, and a second button can be used to stop the process when the desired object
is highlighted. If very many objects are to be searched in this way, additional
buttons can be used to speed up the highlighting process. One button initiates a
rapid successive highlighting of structures. A second button is activated to stop
the process, and a third button is used to back up slowly through the highlighting
process. Finally, a stop button could be pressed to complete the pick procedure.

If picture components can be selected by name, keyboard input can be used
to pick an object. This is a straightforward, but less interactive, pick-selection
method. Some graphics packages allow picture components to be named at var-
ious levels down to the individual primitives. Descriptive names can be used
to help a user in the pick process, but this approach has drawbacks. It is gener-
ally slower than interactive picking on the screen, and a user will probably need
prompts to remember the various structure names.

3 Input Functions for Graphical Data
Graphics packages that use the logical classification for input devices provide
several functions for selecting devices and data classes. These functions allow a
user to specify the following options:

• The input interaction mode for the graphics program and the input devices.
Either the program or the devices can initiate data entry, or both can operate
simultaneously.

• Selection of a physical device that is to provide input within a particular
logical classification (for example, a tablet used as a stroke device).

• Selection of the input time and device for a particular set of data values.

Interactive Input Methods and Graphical User Interfaces

595

Input Modes
Some input functions in an interactive graphics system are used to specify how
the program and input devices should interact. A program could request input
at a particular time in the processing (request mode), or an input device could
independently provide updated input (sample mode), or the device could inde-
pendently store all collected data (event mode).

In request mode, the application program initiates data entry. When
input values are requested, processing is suspended until the required values are
received. This input mode corresponds to the typical input operation in a general
programming language. The program and the input devices operate alternately.
Devices are put into a wait state until an input request is made; then the program
waits until the data are delivered.

In sample mode, the application program and input devices operate inde-
pendently. Input devices may be operating at the same time that the program is
processing other data. New values obtained from the input devices replace pre-
viously input data values. When the program requires new data, it samples the
current values that have been stored from the device input.

In event mode, the input devices initiate data input to the application pro-
gram. The program and the input devices again operate concurrently, but now
the input devices deliver data to an input queue, also called an event queue. All
input data is saved. When the program requires new data, it goes to the data
queue.

Typically, any number of devices can be operating at the same time in sample
and event modes. Some can be operating in sample mode, while others are operat-
ing in event mode. But only one device at a time can deliver input in request mode.

Other functions in the input library are used to specify physical devices
for the logical data classes. The input procedures in an interactive package can
involve complicated processing for some kinds of input. For instance, to obtain a
world-coordinate position, the input procedures must process an input screen
location back through the viewing and other transformations to the original
world-coordinate description of a scene. This processing also involves informa-
tion from the display-window routines.

Echo Feedback
Requests can usually be made in an interactive input program for an echo of input
data and associated parameters. When an echo of the input data is requested, it is
displayed within a specified screen area. Echo feedback can include, for example,
the size of the pick window, the minimum pick distance, the type and size of
a cursor, the type of highlighting to be employed during pick operations, the
range (mininum and maximum) for valuator input, and the resolution (scale) for
valuator input.

Callback Functions
For device-independent graphics packages, a limited set of input functions can be
provided in an auxiliary library. Input procedures can then be handled as callback

Interactive Input Methods and Graphical User Interfaces

functions that interact with the system software. These functions specify what
actions are to be taken by a program when an input event occurs. Typical input
events are moving a mouse, pressing a mouse button, or pressing a key on the
keyboard.

596

4 Interactive Picture-Construction
Techniques

A variety of interactive methods are often incorporated into a graphics package
as aids in the construction of pictures. Routines can be provided for positioning
objects, applying constraints, adjusting the sizes of objects, and designing shapes
and patterns.

Basic Positioning Methods
We can interactively choose a coordinate position with a pointing device that
records a screen location. How the position is used depends on the selected
processing option. The coordinate location could be an endpoint position for
a new line segment, or it could be used to position some object—for instance, the
selected screen location could reference a new position for the center of a sphere;
or the location could be used to specify the position for a text string, which could
begin at that location or it could be centered on that location. As an additional
positioning aid, numeric values for selected positions can be echoed on the screen.
With the echoed coordinate values as a guide, a user could make small interactive
adjustments in the coordinate values using dials, arrow keys, or other devices.

Dragging
Another interactive positioning technique is to select an object and drag it to a
new location. Using a mouse, for instance, we position the cursor at the object
position, press a mouse button, move the cursor to a new position, and release
the button. The object is then displayed at the new cursor location. Usually, the
object is displayed at intermediate positions as the screen cursor moves.

Constraints
Any procedure for altering input coordinate values to obtain a particular ori-
entation or alignment of an object is called a constraint. For example, an input
line segment can be constrained to be horizontal or vertical, as illustrated in Fig-
ures 3 and 4. To implement this type of constraint, we compare the input
coordinate values at the two endpoints. If the difference in the y values of the
two endpoints is smaller than the difference in the x values, a horizontal line is
displayed. Otherwise, a vertical line is drawn. The horizontal-vertical constraint
is useful, for instance, in forming network layouts, and it eliminates the need for
precise positioning of endpoint coordinates.

Select First
Endpoint Position

�

Select
Second Endpoint

Position Along
Approximate

Horizontal Path

�

F I G U R E 3
Horizontal line constraint.

Interactive Input Methods and Graphical User Interfaces

597

F I G U R E 4
Vertical line constraint.

Select First
Endpoint Position

�

Select
Second Endpoint

Position Along
Approximate
Vertical Path

�

Other kinds of constraints can be applied to input coordinates to produce a
variety of alignments. Lines could be constrained to have a particular slant, such
as 45◦, and input coordinates could be constrained to lie along predefined paths,
such as circular arcs.

Grids
Another kind of constraint is a rectangular grid displayed in some part of the
screen area. With an activated grid constraint, input coordinates are rounded to
the nearest grid intersection. Figure 5 illustrates line drawing using a grid. Each
of the cursor positions in this example is shifted to the nearest grid intersection
point, and a line is drawn between these two grid positions. Grids facilitate object
constructions, because a new line can be joined easily to a previously drawn line
by selecting any position near the endpoint grid intersection of one end of the
displayed line. Spacing between grid lines is often an option, and partial grids or
grids with different spacing could be used in different screen areas.

Select First Endpoint
Position Near a

Grid Intersection

�

Select a Position
Near a Second

Grid Intersection

�

F I G U R E 5
Construction of a line segment with
endpoints constrained to grid
intersection positions.

Rubber-Band Methods
Line segments and other basic shapes can be constructed and positioned using
rubber-band methods that allow the sizes of objects to be interactively stretched
or contracted. Figure 6 demonstrates a rubber-band method for interactively
specifying a line segment. First, a fixed screen position is selected for one endpoint
of the line. Then, as the cursor moves around, the line is displayed from the start
position to the current position of the cursor. The second endpoint of the line is
input when a button or key is pressed. Using a mouse, we construct a rubber-band
line while pressing a mouse key. When the mouse key is released, the line display
is completed.

F I G U R E 6
A rubber-band method for
constructing and positioning a
straight-line segment.

Select
First
Line

Endpoint

�

As the Cursor
Moves, a Line
Stretches out

from the Initial
Point

�

Line Follows
Cursor Position

until the Second
Endpoint Is

Selected

�

Interactive Input Methods and Graphical User Interfaces

598

Select
Position

for One Corner
of the Rectangle

�

Rectangle
Stretches Out

as Cursor Moves

�

Select Final
Position for

Opposite Corner
of the Rectangle

�

F I G U R E 7
A rubber-band method for
constructing a rectangle.

Select Position
for the Circle

Center

�

Circle Stretches
Out as the

Cursor Moves

�

Select the
Final Radius
of the Circle

�

F I G U R E 8
Constructing a circle using a
rubber-band method.

We can use similar rubber-band methods to construct rectangles, circles, and
other objects. Figure 7 demonstrates rubber-band construction of a rectan-
gle, and Figure 8 shows a rubber-band circle construction. We can implement
rubber-band constructions in various ways. For example, the shape and size of
a rectangle can be adjusted by independently moving only the top edge of the
rectangle, or the bottom edge, or one of the side edges.

Gravity Field
In the construction of figures, we sometimes need to connect lines at positions
between endpoints that are not at grid intersections. Because exact positioning of
the screen cursor at the connecting point can be difficult, a graphics package can
include a procedure that converts any input position near a line segment into a
position on the line using a gravity field area around the line. Any selected position
within the gravity field of a line is moved (“gravitated”) to the nearest position
on the line. A gravity field area around a line is illustrated with the shaded region
shown in Figure 9. F I G U R E 9

A gravity field around a line. Any
selected point in the shaded area is
shifted to a position on the line.

Gravity fields around the line endpoints are enlarged to make it easier for
a designer to connect lines at their endpoints. Selected positions in one of the
circular areas of the gravity field are attracted to the endpoint in that area. The
size of gravity fields is chosen large enough to aid positioning, but small enough
to reduce chances of overlap with other lines. If many lines are displayed, gravity
areas can overlap, and it may be difficult to specify points correctly. Normally, the
boundary for the gravity field is not displayed.

Interactive Painting and Drawing Methods
Options for sketching, drawing, and painting come in a variety of forms. Straight
lines, polygons, and circles can be generated with methods discussed in the

Interactive Input Methods and Graphical User Interfaces

599

previous sections. Curve-drawing options can be provided using standard curve
shapes, such as circular arcs and splines, or with freehand sketching procedures.
Splines are interactively constructed by specifying a set of control points or a
freehand sketch that gives the general shape of the curve. Then the system fits
the set of points with a polynomial curve. In freehand drawing, curves are gen-
erated by following the path of a stylus on a graphics tablet or the path of the
screen cursor on a video monitor. Once a curve is displayed, the designer can
alter the curve shape by adjusting the positions of selected points along the
curve path.

Line widths, line styles, and other attribute options are also commonly found
in painting and drawing packages.
combinations,
many
systems
artist’s
used
cified
for a scene.

5 Virtual-Reality Environments
A typical virtual-reality environment is illustrated in Color Plate 24. Interac-

Another method for generating virtual scenes is to display stereographic
projections on a raster monitor, with the two stereographic views displayed on
alternate refresh cycles. The scene is then viewed through stereographic glasses.
Interactive object manipulations can again be accomplished with a data glove
and a tracking device to monitor the glove position and orientation relative to the
position of objects in the scene.

6 OpenGL Interactive Input-Device
Functions

Interactive device input in an OpenGL program is handled with routines in the
OpenGL Utility Toolkit (GLUT), because these routines need to interface with
a window system. In GLUT, we have functions to accept input from standard
devices, such as a mouse or a keyboard, as well as from tablets, space balls,
button boxes, and dials. For each device, we specify a procedure (the call back
function) that is to be invoked when an input event from that device occurs. These
GLUT commands are placed in the main procedure along with the other GLUT
statements. In addition, a combination of functions from the basic library and the
GLU library can be used with the GLUT mouse function for pick input.

Interactive Input Methods and Graphical User Interfaces

Various brush styles, brush patterns, color
object shapes, and surface texture patterns are also available on

systems, particularly those designed as artists’ workstations. Some paint
vary the line width and brush strokes according to the pressure of the

hand on the stylus. Color Plate 23 shows a window and menu system
with a painting package that allows an artist to select variations of a spe-
object shape, different surface textures, and a variety of lighting conditions

tive input is accomplished in this environment with a data glove, which is capable
of grasping and moving objects displayed in a virtual scene. The computer-gener-
ated scene is displayed through a head-mounted viewing system as a stereographic
projection. Tracking devices compute the position and orientation of the headset
and data glove relative to the object positions in the scene. With this system, a user
can move through the scene and rearrange object positions with the data glove.

600

GLUT Mouse Functions
We use the following function to specify (“register”) a procedure that is to be
called when the mouse pointer is in a display window and a mouse button is
pressed or released:

glutMouseFunc (mouseFcn);

This mouse callback procedure, which we namedmouseFcn, has four arguments:

void mouseFcn (GLint button, GLint action, GLint xMouse,
GLint yMouse)

Parameter button is assigned a GLUT symbolic constant that denotes one
of the three mouse buttons, and parameter action is assigned a symbolic
constant that specifies which button action we want to use to trigger the
mouse activation event. Allowable values for button are GLUT LEFT BUTTON,
GLUT MIDDLE BUTTON, and GLUT RIGHT BUTTON. (If we have only a two-
button mouse, then we use just the left-button and right-button designations;
with a one-button mouse, we can assign parameter button only the value
GLUT LEFT BUTTON.) Parameter action can be assigned either GLUT DOWN or
GLUT UP, depending on whether we want to initiate an action when we press a
mouse button or when we release it. When procedure mouseFcn is invoked, the
display-window location of the mouse cursor is returned as the coordinate posi-
tion (xMouse,yMouse). This location is relative to the top-left corner of the display
window, so thatxMouse is the pixel distance from the left edge of the display win-
dow and yMouse is the pixel distance down from the top of the display window.

By activating a mouse button while the screen cursor is within the display
window, we can select a position for displaying a primitive such as a single point,
a line segment, or a fill area. We could also use the mouse as a pick device by
comparing the returned screen position with the coordinate extents of displayed
objects in a scene. However, OpenGL does provide routines for using the mouse
as a pick device, and we discuss these routines in a later section.

As a simple example of the use of the glutMouseFunc routine, the following
program plots a red point, with a point size equal to 3, at the position of the mouse
cursor in the display window, each time that we press the left mouse button.
Because the coordinate origin for the OpenGL primitive functions is the lower-
left corner of the display window, we need to flip the returned yMouse value in
the procedure mousePtPlot.

#include <GL/glut.h>

GLsizei winWidth = 400, winHeight = 300; // Initial display-window size.

void init (void)
{

glClearColor (0.0, 0.0, 1.0, 1.0) // Set display-window color to blue.

glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 200.0, 0.0, 150.0);

}

Interactive Input Methods and Graphical User Interfaces

601

void displayFcn (void)
{

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (1.0, 0.0, 0.0); // Set point color to red.
glPointSize (3.0); // Set point size to 3.0.

}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

/* Reset viewport and projection parameters */
glViewport (0, 0, newWidth, newHeight);
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (0.0, GLdouble (newWidth), 0.0, GLdouble (newHeight));

/* Reset display-window size parameters. */
winWidth = newWidth;
winHeight = newHeight;

}

void plotPoint (GLint x, GLint y)
{

glBegin (GL_POINTS);
glVertex2i (x, y);

glEnd ();
}

void mousePtPlot (GLint button, GLint action, GLint xMouse, GLint yMouse)
{

if (button == GLUT_LEFT_BUTTON && action == GLUT_DOWN)
plotPoint (xMouse, winHeight - yMouse);

glFlush ();
}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Mouse Plot Points");

init ();
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);
glutMouseFunc (mousePtPlot);

glutMainLoop ();
}

Interactive Input Methods and Graphical User Interfaces

602

The next program example uses mouse input to select an endpoint position
for a straight-line segment. Selected line segments are connected to demonstrate
interactive construction of a polyline. Initially, two display-window locations
must be selected with the left mouse button to generate the first line segment.
Each subsequent position that we select adds another segment to the polyline.

#include <GL/glut.h>

GLsizei winWidth = 400, winHeight = 300; // Initial display-window size.
GLint endPtCtr = 0; // Initialize line endpoint counter.

class scrPt {
public:

GLint x, y;
};

void init (void)
{

glClearColor (0.0, 0.0, 1.0, 1.0) // Set display-window color to blue.

glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 200.0, 0.0, 150.0);

}

void displayFcn (void)
{

glClear (GL_COLOR_BUFFER_BIT);
}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

/* Reset viewport and projection parameters */
glViewport (0, 0, newWidth, newHeight);
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (0.0, GLdouble (newWidth), 0.0, GLdouble (newHeight));

/* Reset display-window size parameters. */
winWidth = newWidth;
winHeight = newHeight;

}

void drawLineSegment (scrPt endPt1, scrPt endPt2)
{

glBegin (GL_LINES);
glVertex2i (endPt1.x, endPt1.y);
glVertex2i (endPt2.x, endPt2.y);

glEnd ();
}

Interactive Input Methods and Graphical User Interfaces

603

void polyline (GLint button, GLint action, GLint xMouse, GLint yMouse)
{

static scrPt endPt1, endPt2;

if (ptCtr == 0) {
if (button == GLUT_LEFT_BUTTON && action == GLUT_DOWN) {

endPt1.x = xMouse;
endPt1.y = winHeight - yMouse;
ptCtr = 1;

}
else

if (button == GLUT_RIGHT_BUTTON) // Quit the program.
exit (0);

}
else

if (button == GLUT_LEFT_BUTTON && action == GLUT_DOWN) {
endPt2.x = xMouse;
endPt2.y = winHeight - yMouse;
drawLineSegment (endPt1, endPt2);

endPt1 = endPt2;
}
else

if (button == GLUT_RIGHT_BUTTON) // Quit the program.
exit (0);

glFlush ();
}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Draw Interactive Polyline");

init ();
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);
glutMouseFunc (polyline);

glutMainLoop ();
}

Another GLUT mouse routine that we can use is

glutMotionFunc (fcnDoSomething);

This routine invokes fcnDoSomething when the mouse is moved within the
display window with one or more buttons activated. The function that is invoked
in this case has two arguments:

void fcnDoSomething (GLint xMouse, GLint yMouse)

Interactive Input Methods and Graphical User Interfaces

604

where (xMouse, yMouse) is the mouse location in the display window relative to
the top-left corner, when the mouse is moved with a button pressed.

Similarly, we can perform some action when we move the mouse within the
display window without pressing a button:

glutPassiveMotionFunc (fcnDoSomethingElse);

Again, the mouse location is returned to fcnDoSomethingElse as coordi-
nate position (xMouse, yMouse), relative to the top-left corner of the display
window.

GLUT Keyboard Functions
With keyboard input, we use the following function to specify a procedure that
is to be invoked when a key is pressed:

glutKeyboardFunc (keyFcn);

The specified procedure has three arguments:

void keyFcn (GLubyte key, GLint xMouse, GLint yMouse)

Parameter key is assigned a character value or the corresponding ASCII code.
The display-window mouse location is returned as position (xMouse, yMouse)
relative to the top-left corner of the display window. When a designated key is
pressed, we can use the mouse location to initiate some action, independently of
whether any mouse buttons are pressed.

In the following code, we present a simple curve-drawing procedure
using keyboard input. A freehand curve is generated by moving the mouse
within the display window while holding down the “c” key. This displays a
sequence of red dots at each recorded mouse position. By slowly moving the
mouse, we can obtain a solid curved line. Mouse buttons have no effect in this
example.

#include <GL/glut.h>

GLsizei winWidth = 400, winHeight = 300; // Initial display-window size.

void init (void)
{

glClearColor (0.0, 0.0, 1.0, 1.0); // Set display-window color to blue.

glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 200.0, 0.0, 150.0);

}

void displayFcn (void)
{

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (1.0, 0.0, 0.0); // Set point color to red.
glPointSize (3.0); // Set point size to 3.0.

}

Interactive Input Methods and Graphical User Interfaces

605

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

/* Reset viewport and projection parameters */
glViewport (0, 0, newWidth, newHeight);
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (0.0, GLdouble (newWidth), 0.0, GLdouble (newHeight));

/* Reset display-window size parameters. */
winWidth = newWidth;
winHeight = newHeight;

}

void plotPoint (GLint x, GLint y)
{

glBegin (GL_POINTS);
glVertex2i (x, y);

glEnd ();
}

/* Move cursor while pressing c key enables freehand curve drawing. */
void curveDrawing (GLubyte curvePlotKey, GLint xMouse, GLint yMouse)
{

GLint x = xMouse;
GLint y = winHeight - yMouse;
switch (curvePlotKey)
{

case 'c':
plotPoint (x, y);
break;

default:
break;

}
glFlush ();

}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Keyboard Curve-Drawing Example");

init ();
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);
glutKeyboardFunc (curveDrawing);

glutMainLoop ();
}

Interactive Input Methods and Graphical User Interfaces

606

For function keys, arrow keys, and other special-purpose keys, we can use
the command

glutSpecialFunc (specialKeyFcn);

The specified procedure has the same three arguments:

void specialKeyFcn (GLint specialKey, GLint xMouse,
GLint yMouse)

but now parameter specialKey is assigned an integer-valued GLUT symbolic
constant. To select a function key, we use one of the constants GLUT KEY F1
through GLUT KEY F12. For the arrow keys, we use constants such as
GLUT KEY UP and GLUT KEY RIGHT. Other keys can be designated using
GLUT KEY PAGE DOWN, GLUT KEY HOME, and similar constants for the page
up, end, and insert keys. The backspace, delete, and escape keys can be designated
with the glutKeyboardFunc routine using their ASCII codes, which are 8, 127,
and 27, respectively.

An interactive program using the mouse, keyboard, and function keys is
demonstrated in the following code. Mouse input is used to select a location for
the lower-left corner of a red square. Keyboard input is used to scale the size of
the square, and a new square is obtained with each click of the left mouse button.

#include <GL/glut.h>
#inclue <stdlib.h>

GLsizei winWidth = 400, winHeight = 300; // Initial display-window size.
GLint edgeLength = 10; // Initial edge length for square.

void init (void)
{

glClearColor (0.0, 0.0, 1.0, 1.0) // Set display-window color to blue.

glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 200.0, 0.0, 150.0);

}

void displayFcn (void)
{

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (1.0, 0.0, 0.0); // Set fill color to red.
}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

/* Reset viewport and projection parameters */
glViewport (0, 0, newWidth, newHeight);
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (0.0, GLdouble (newWidth), 0.0, GLdouble (newHeight));

Interactive Input Methods and Graphical User Interfaces

607

/* Reset display-window size parameters. */
winWidth = newWidth;
winHeight = newHeight;

}

/* Display a red square with a selected edge-length size. */
void fillSquare (GLint button, GLint action, GLint xMouse, GLint yMouse)
{

GLint x1, y1, x2, y2;

/* Use left mouse button to select a position for the
* lower-left corner of the square.
*/
if (button == GLUT_LEFT_BUTTON && action == GLUT_DOWN)
{

x1 = xMouse;
y1 = winHeight - yMouse;
x2 = x1 + edgeLength;
y2 = y1 + edgeLength;
glRecti (x1, y1, x2, y2);

}
else

if (button == GLUT_RIGHT_BUTTON) // Use right mouse button to quit.
exit (0);

glFlush ();
}

/* Use keys 2, 3, and 4 to enlarge the square. */
void enlargeSquare (GLubyte sizeFactor, GLint xMouse, GLint yMouse)
{

switch (sizeFactor)
{

case '2':
edgeLength *= 2;
break;

case '3':
edgeLength *= 3;
break;

case '4':
edgeLength *= 4;
break;

default:
break;

}
}

/* Use function keys F2 and F4 for reduction factors 1/2 and 1/4. */
void reduceSquare (GLint reductionKey, GLint xMouse, GLint yMouse)
{

switch (reductionKey)
{

case GLUT_KEY_F2:
edgeLength /= 2;
break;

Interactive Input Methods and Graphical User Interfaces

608

case GLUT_KEY_F3:
edgeLength /= 4;
break;

default:
break;

}
}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Display Squares of Various Sizes");

init ();
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);
glutMouseFunc (fillSquare);
glutKeyboardFunc (enlargeSquare);
glutSpecialFunc (reduceSquare);

glutMainLoop ();
}

GLUT Tablet Functions
Usually, tablet activation occurs only when the mouse cursor is in the display
window. A button event for tablet input is then recorded with

glutTabletButtonFunc (tabletFcn);

and the arguments for the invoked function are similar to those for a mouse:

void tabletFcn (GLint tabletButton, GLint action,
GLint xTablet, GLint yTablet)

We designate a tablet button with an integer identifier such as 1, 2, 3, and so on,
and the button action is again specified with either GLUT UP or GLUT DOWN.
The returned values xTablet and yTablet are the tablet coordinates. We can
determine the number of available tablet buttons with the command

glutDeviceGet (GLUT_NUM_TABLET_BUTTONS);

Motion of a tablet stylus or cursor is processed with the following function:

glutTabletMotionFunc (tabletMotionFcn);

where the invoked function has the form

void tabletMotionFcn (GLint xTablet, GLint yTablet)

The returned values xTablet and yTablet give the coordinates on the tablet
surface.

Interactive Input Methods and Graphical User Interfaces

609

GLUT Spaceball Functions
We use the following function to specify an operation when a spaceball button is
activated for a selected display window:

glutSpaceballButtonFunc (spaceballFcn);

The callback function has two parameters:

void spaceballFcn (GLint spaceballButton, GLint action)

Spaceball buttons are identified with the same integer values as a tablet, and
parameter action is assigned either the value GLUT UP or the value
GLUT DOWN. We can determine the number of available spaceball buttons with a
call toglutDeviceGetusing the argumentGLUT NUM SPACEBALL BUTTONS.

Translational motion of a spaceball, when the mouse is in the display window,
is recorded with the function call

glutSpaceballMotionFunc (spaceballTranlFcn);

The three-dimensional translation distances are passed to the invoked function
as, for example:

void spaceballTranslFcn (GLint tx, GLint ty, GLint tz)

These translation distances are normalized within the range from −1000 to 1000.
Similarly, a spaceball rotation is recorded with

glutSpaceballRotateFunc (spaceballRotFcn);

The three-dimensional rotation angles are then available to the callback
function, as follows:

void spaceballRotFcn (GLint thetaX, GLint thetaY, GLint thetaZ)

GLUT Button-Box Function
Input from a button box is obtained with the following statement:

glutButtonBoxFunc (buttonBoxFcn);

Button activation is then passed to the invoked function:

void buttonBoxFcn (GLint button, GLint action);

The buttons are identified with integer values, and the button action is specified
as GLUT UP or GLUT DOWN.

GLUT Dials Function
A dial rotation can be recorded with the following routine:

glutDialsFunc (dialsFcn);

In this case, we use the callback function to identify the dial and obtain the angular
amount of rotation:

void dialsFcn (GLint dial, GLint degreeValue);

Dials are designated with integer values, and the dial rotation is returned as an
integer degree value.

Interactive Input Methods and Graphical User Interfaces

610

OpenGL Picking Operations
In an OpenGL program, we can interactively select objects by pointing to screen
positions. However, the picking operations in OpenGL are not straightforward.

Basically, we perform picking using a designated pick window to form a
revised view volume. We assign integer identifiers to objects in a scene, and the
identifiers for those objects that intersect the revised view volume are stored in a
pick-buffer array. Thus, to use the OpenGL pick features, we need to incorporate
the following procedures into a program:

• Create and display a scene.
• Pick a screen position and, within the mouse callback function, do the

following:
• Set up a pick buffer.
• Activate the picking operations (selection mode).
• Initialize an ID name stack for object identifiers.
• Save the current viewing and geometric-transformation matrix.
• Specify a pick window for the mouse input.
• Assign identifiers to objects and reprocess the scene using the revised

view volume. (Pick information is then stored in the pick buffer.)
• Restore the original viewing and geometric-transformation matrix.
• Determine the number of objects that have been picked, and return to

the normal rendering mode.
• Process the pick information.

We can also use a modification of these procedures to select objects without
interactive input from a mouse. This is accomplished by specifying the vertices
for the revised view volume, instead of designating a pick window.

A pick-buffer array is set up with the command

glSelectBuffer (pickBuffSize, pickBuffer);

Parameter pickBuffer designates an integer array with pickBuffSize
elements. The glSelectBuffer function must be invoked before the OpenGL
picking operations (selection mode) are activated. An integer information record
is stored in pick-buffer array for each object that is selected with a single pick
input. Several records of information can be stored in the pick buffer, depending
on the size and location of the pick window. Each record in the pick buffer contains
the following information:

1. The stack position of the object, which is the number of identifiers in the
name stack, up to and including the position of the picked object.

2. The minimum depth of the picked object.
3. The maximum depth of the picked object.
4. The list of the identifiers in the name stack from the first (bottom) identifier

to the identifier for the picked object.

The integer depth values stored in the pick buffer are the original values in the
range from 0 to 1.0, multiplied by 232 − 1.

The OpenGL picking operations are activated with

glRenderMode (GL_SELECT);

Interactive Input Methods and Graphical User Interfaces

611

This places us in selection mode, which means that a scene is processed through
the viewing pipeline but not stored in the frame buffer. A record of information
for each object that would have been displayed in the normal rendering mode is
placed in the pick buffer. In addition, this command returns the number of picked
objects, which is equal to the number of information records in the pick buffer. To
return to the normal rendering mode (the default), we invoke theglRenderMode
routine using the argument GL RENDER. A third option is the argument
GL FEEDBACK, which stores object coordinates and other information in a feed-
back buffer without displaying the objects. Feedback mode is used to obtain
information about primitive types, attributes, and other parameters associated
with the objects in a scene.

We use the following statement to activate the integer-ID name stack for the
picking operations:

glInitNames ();

The ID stack is initially empty, and this stack can be used only in selection mode.
To place an unsigned integer value on the stack, we can invoke the following
function:

glPushName (ID);

This places the value for parameter ID on the top of the stack and pushes the
previous top name down to the next position in the stack. We can also simply
replace the top of the stack using

glLoadName (ID);

but we cannot use this command to place a value on an empty stack. To eliminate
the top of the ID stack, we issue the command

glPopName ();

A pick window within a selected viewport is defined using the following
GLU function:

gluPickMatrix (xPick, yPick, widthPick, heightPick, vpArray);

Parameters xPick and yPick give the double-precision, screen-coordinate
location for the center of the pick window relative to the lower-left corner of
the viewport. When these coordinates are given with mouse input, the mouse
coordinates are relative to the upper-left corner, and thus we need to invert the
input yMouse value. The double-precision values for the width and height of
the pick window are specified with parameters widthPick and heightPick.
Parameter vpArray designates an integer array containing the coordinate posi-
tion and size parameters for the current viewport. We can obtain the viewport

We illustrate the OpenGL picking operations in the following program, which
displays three color rectangles with the colors red, blue, and green. For this picking
example, we use a 5 × 5 pick window, and the center of the pick window is given

Interactive Input Methods and Graphical User Interfaces

parameters using the glGetIntegerv function. This pick window is then used
as a clipping window to construct a revised view volume for the viewing trans-
formations. Information for objects that intersect this revised view volume is
placed in the pick buffer.

612

with mouse input. Therefore, we need to invert the input yMouse value using
the viewport height, which is the fourth element of the array vpArray. The red
rectangle is assigned ID = 30, the blue rectangle is assigned ID = 10, and the green
rectangle is assigned ID = 20. Depending on the input mouse position, we can
pick no rectangles, one rectangle, two of the rectangles, or all three rectangles at
one time. The rectangle identifiers are entered into the ID stack in the color order:
red, blue, green. Therefore, when we process a picked rectangle, we could use
either its identifier or its stack position number. For example, if the stack position
number, which is the first item in the pick record, is 2, then we have picked the blue
rectangle and there are two rectangle identifiers listed at the end of the record.
Alternatively, we could use the last entry in the record, which is the identifier
for the picked object. In this example program, we simply list the contents of the
pick buffer. The rectangles are defined in the xy plane, so all depth values are 0.
A sample output is given in Example 1 for a mouse input position that is near
the boundary between the red and green rectangles. No mechanism is provided
for terminating the program, so any number of mouse inputs can be processed.

#include <GL/glut.h>
#include <stdio.h>

const GLint pickBuffSize = 32;

/* Set initial display-window size. */
GLsizei winWidth = 400, winHeight = 400;

void init (void)
{

/* Set display-window color to white. */
glClearColor (1.0, 1.0, 1.0, 1.0);

}

/* Define 3 rectangles and associated IDs. */
void rects (GLenum mode)
{

if (mode == GL_SELECT)
glPushName (30); // Red rectangle.

glColor3f (1.0, 0.0, 0.0);
glRecti (40, 130, 150, 260);

if (mode == GL_SELECT)
glPushName (10); // Blue rectangle.

glColor3f (0.0, 0.0, 1.0);
glRecti (150, 130, 260, 260);

if (mode == GL_SELECT)
glPushName (20); // Green rectangle.

glColor3f (0.0, 1.0, 0.0);
glRecti (40, 40, 260, 130);

}

/* Print the contents of the pick buffer for each mouse selection. */
void processPicks (GLint nPicks, GLuint pickBuffer [])

Interactive Input Methods and Graphical User Interfaces

613

{
GLint j, k;
GLuint objID, *ptr;

printf (" Number of objects picked = %d\n", nPicks);
printf ("\n");
ptr = pickBuffer;

/* Output all items in each pick record. */
for (j = 0; j < nPicks; j++) {

objID = *ptr;

printf (" Stack position = %d\n", objID);
ptr++;

printf (" Min depth = %g,", float (*ptr/0x7fffffff));
ptr++;

printf (" Max depth = %g\n", float (*ptr/0x7fffffff));
ptr++;

printf (" Stack IDs are: \n");
for (k = 0; k < objID; k++) {

printf (" %d ",*ptr);
ptr++;

}
printf ("\n\n");

}
}

void pickRects (GLint button, GLint action, GLint xMouse, GLint yMouse)
{

GLuint pickBuffer [pickBuffSize];
GLint nPicks, vpArray [4];

if (button != GLUT_LEFT_BUTTON || action != GLUT_DOWN)
return;

glSelectBuffer (pickBuffSize, pickBuffer); // Designate pick buffer.
glRenderMode (GL_SELECT); // Activate picking operations.
glInitNames (); // Initialize the object-ID stack.

/* Save current viewing matrix. */
glMatrixMode (GL_PROJECTION);
glPushMatrix ();
glLoadIdentity ();

/* Obtain the parameters for the current viewport. Set up
* a 5 x 5 pick window, and invert the input yMouse value
* using the height of the viewport, which is the fourth
* element of vpArray.
*/
glGetIntegerv (GL_VIEWPORT, vpArray);
gluPickMatrix (GLdouble (xMouse), GLdouble (vpArray [3] - yMouse),

5.0, 5.0, vpArray);

Interactive Input Methods and Graphical User Interfaces

614

gluOrtho2D (0.0, 300.0, 0.0, 300.0);
rects (GL_SELECT); // Process the rectangles in selection mode.

/* Restore original viewing matrix. */
glMatrixMode (GL_PROJECTION);
glPopMatrix ();

glFlush ();

/* Determine the number of picked objects and return to the
* normal rendering mode.
*/
nPicks = glRenderMode (GL_RENDER);

processPicks (nPicks, pickBuffer); // Process picked objects.

glutPostRedisplay ();
}

void displayFcn (void)
{

glClear (GL_COLOR_BUFFER_BIT);
rects (GL_RENDER); // Display the rectangles.
glFlush ();

}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

/* Reset viewport and projection parameters. */
glViewport (0, 0, newWidth, newHeight);
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();

gluOrtho2D (0.0, 300.0, 0.0, 300.0);
glMatrixMode (GL_MODELVIEW);

/* Reset display-window size parameters. */
winWidth = newWidth;
winHeight = newHeight;

}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Example Pick Program");

init ();
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);
glutMouseFunc (pickRects);

glutMainLoop ();
}

Interactive Input Methods and Graphical User Interfaces

615

E X A M P L E 1 Sample Output from Procedure pickrects.

Number of objects picked = 2

Stack position = 1
Min depth = 0, Max depth = 0
Stack IDs are:
30

Stack position = 3
Min depth = 0, Max depth = 0
Stack IDs are:
30 10 20

7 OpenGL Menu Functions
In addition to the input-device routines, GLUT contains various functions for
adding simple pop-up menus to programs. With these functions, we can set up and
access a variety of menus and associated submenus. The GLUT menu commands
are placed in procedure main along with the other GLUT functions.

Creating a GLUT Menu
A pop-up menu is created with the statement

glutCreateMenu (menuFcn);

where parameter menuFcn is the name of a procedure that is to be invoked when
a menu entry is selected. This procedure has one argument, which is the integer
value corresponding to the position of a selected option.

void menuFcn (GLint menuItemNumber)

The integer value passed to parameter menuItemNumber is then used by
menuFcn to perform an operation. When a menu is created, it is associated with
the current display window.

Once we have designated the menu function that is to be invoked when a
menu item is selected, we must specify the options that are to be listed in the
menu. We do this with a series of statements that list the name and position for
each option. These statements have the general form

glutAddMenuEntry (charString, menuItemNumber);

Parameter charString specifies text that is to be displayed in the menu, and
parameter menuItemNumber gives the location for that entry in the menu. For
example, the following statements create a menu with two options:

glutCreateMenu (menuFcn);
glutAddMenuEntry ("First Menu Item", 1);
glutAddMenuEntry ("Second Menu Item", 2);

Next, we must specify a mouse button that is to be used to select a menu
option. This is accomplished with

glutAttachMenu (button);

Interactive Input Methods and Graphical User Interfaces

616

Computer Animation

1 Raster Methods for Computer
Animation

2 Design of Animation Sequences

3 Traditional Animation Techniques

4 General Computer-Animation
Functions

5 Computer-Animation Languages

6 Key-Frame Systems

7 Motion Specifications

8 Character Animation

9 Periodic Motions

10 OpenGL Animation Procedures

11 Summary

C omputer-graphics methods are now commonly used to pro-

duce animations for a variety of applications, including

entertainment (motion pictures and cartoons), advertis-

ing, scientific and engineering studies, and training and education.

Although we tend to think of animation as implying object motion,

the term computer animation generally refers to any time sequence

of visual changes in a picture. In addition to changing object posi-

tions using translations or rotations, a computer-generated anima-

tion could display time variations in object size, color, transparency,

or surface texture. Advertising animations often transition one object

shape into another: for example, transforming a can of motor oil

into an automobile engine. We can also generate computer anima-

tions by varying camera parameters, such as position, orientation, or

focal length, and variations in lighting effects or other parameters and

procedures associated with illumination and rendering can be used to

produce computer animations.

Another consideration in computer-generated animation is

realism. Many applications require realistic displays. An accurate

From Chapter 1 of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

2

365

representation of the shape of a thunderstorm or other natural phenomena described

with a numerical model is important for evaluating the reliability of the model. Simi-

larly, simulators for training aircraft pilots and heavy-equipment operators must produce

reasonably accurate representations of the environment. Entertainment and advertising

applications, on the other hand, are sometimes more interested in visual effects. Thus,

scenes may be displayed with exaggerated shapes and unrealistic motions and transfor-

mations. However, there are many entertainment and advertising applications that do

require accurate representations for computer-generated scenes. Also, in some scien-

tific and engineering studies, realism is not a goal. For example, physical quantities are

often displayed with pseudo-colors or abstract shapes that change over time to help the

researcher understand the nature of the physical process.

Two basic methods for constructing a motion sequence are real-time animation
and frame-by-frame animation. In a real-time computer-animation, each stage of the

sequence is viewed as it is created. Thus the animation must be generated at a rate that

is compatible with the constraints of the refresh rate. For a frame-by-frame animation,

each frame of the motion is separately generated and stored. Later, the frames can be

recorded on film, or they can be displayed consecutively on a video monitor in “real-time

playback” mode. Simple animation displays are generally produced in real time, while

more complex animations are constructed more slowly, frame by frame. However, some

applications require real-time animation, regardless of the complexity of the animation.

A flight-simulator animation, for example, is produced in real time because the video

displays must be generated in immediate response to changes in the control settings.

In such cases, special hardware and software systems are often developed to allow the

complex display sequences to be developed quickly.

1 Raster Methods for Computer Animation
Most of the time, we can create simple animation sequences in our programs using
real-time methods. In general, though, we can produce an animation sequence
on a raster-scan system one frame at a time, so that each completed frame could
be saved in a file for later viewing. The animation can then be viewed by cycling
through the completed frame sequence, or the frames could be transferred to film.
If we want to generate an animation in real time, however, we need to produce the
motion frames quickly enough so that a continuous motion sequence is displayed.
For a complex scene, one frame of the animation could take most of the refresh
cycle time to construct. In that case, objects generated first would be displayed
for most of the frame refresh time, but objects generated toward the end of the
refresh cycle would disappear almost as soon as they were displayed. For very
complex animations, the frame construction time could be greater than the time to
refresh the screen, which can lead to erratic motion and fractured frame displays.
Because the screen display is generated from successively modified pixel values
in the refresh buffer, we can take advantage of some of the characteristics of the
raster screen-refresh process to produce motion sequences quickly.

Double Buffering
One method for producing a real-time animation with a raster system is to
employ two refresh buffers. Initially, we create a frame for the animation in one

Computer Animation

366

of the buffers. Then, while the screen is being refreshed from that buffer, we
construct the next frame in the other buffer. When that frame is complete, we
switch the roles of the two buffers so that the refresh routines use the second
buffer during the process of creating the next frame in the first buffer. This
alternating buffer process continues throughout the animation. Graphics libraries
that permit such operations typically have one function for activating the double-
buffering routines and another function for interchanging the roles of the two
buffers.

When a call is made to switch two refresh buffers, the interchange could be
performed at various times. The most straightforward implementation is to switch
the two buffers at the end of the current refresh cycle, during the vertical retrace
of the electron beam. If a program can complete the construction of a frame within
the time of a refresh cycle, say 1

60 of a second, each motion sequence is displayed
in synchronization with the screen refresh rate. However, if the time to construct
a frame is longer than the refresh time, the current frame is displayed for two
or more refresh cycles while the next animation frame is being generated. For
example, if the screen refresh rate is 60 frames per second and it takes 1

50 of a
second to construct an animation frame, each frame is displayed on the screen
twice and the animation rate is only 30 frames each second. Similarly, if the frame
construction time is 1

25 of a second, the animation frame rate is reduced to 20 frames
per second because each frame is displayed three times.

Irregular animation frame rates can occur with double buffering when the
frame construction time is very nearly equal to an integer multiple of the screen
refresh time. As an example of this, if the screen refresh rate is 60 frames per second,
then an erratic animation frame rate is possible when the frame construction
time is very close to 1

60 of a second, or 2
60 of a second, or 3

60 of a second, and so
forth. Because of slight variations in the implementation time for the routines that
generate the primitives and their attributes, some frames could take a little more
time to construct and some a little less time. Thus, the animation frame rate can
change abruptly and erratically. One way to compensate for this effect is to add
a small time delay to the program. Another possibility is to alter the motion or
scene description to shorten the frame construction time.

Generating Animations Using Raster Operations
We can also generate real-time raster animations for limited applications using
block transfers of a rectangular array of pixel values. This animation technique is

We can also animate objects along two-dimensional motion paths using color-
table transformations. Here we predefine the object at successive positions along
the motion path and set the successive blocks of pixel values to color-table entries.
The pixels at the first position of the object are set to a foreground color, and the
pixels at the other object positions are set to the background color. The animation

Computer Animation

often used in game-playing programs. A simple method for translating an object
from one location to another in the xy plane is to transfer the group of pixel val-
ues that define the shape of the object to the new location. Two-dimensional rota-
tions in multiples of 90º are also simple to perform, although we can rotate rec-
tangular blocks of pixels through other angles using antialiasing procedures. For
a rotation that is not a multiple of 90º, we need to estimate the percentage of area
coverage for those pixels that overlap the rotated block. Sequences of raster oper-
ations can be executed to produce realtime animation for either two-dimension-
al or three-dimensional objects, so long as we restrict the animation to motions
in the projection plane. Then no viewing or visible-surface algorithms need be
invoked.

367

is then accomplished by changing the color-table values so that the object color at
successive positions along the animation path becomes the foreground color as
the preceding position is set to the background color (Figure 1).

2 Design of Animation Sequences
Constructing an animation sequence can be a complicated task, particularly when
it involves a story line and multiple objects, each of which can move in a different
way. A basic approach is to design such animation sequences using the following
development stages:

• Storyboard layout
• Object definitions
• Key-frame specifications
• Generation of in-between frames

The storyboard is an outline of the action. It defines the motion sequence as
a set of basic events that are to take place. Depending on the type of animation to
be produced, the storyboard could consist of a set of rough sketches, along with
a brief description of the movements, or it could just be a list of the basic ideas for
the action. Originally, the set of motion sketches was attached to a large board that
was used to present an overall view of the animation project. Hence, the name
“storyboard.”

An object definition is given for each participant in the action. Objects can be
defined in terms of basic shapes, such as polygons or spline surfaces. In addition,
a description is often given of the movements that are to be performed by each
character or object in the story.

F I G U R E 1
Real-time raster color-table animation.

A key frame is a detailed drawing of the scene at a certain time in the ani-
mation sequence. Within each key frame, each object (or character) is positioned
according to the time for that frame. Some key frames are chosen at extreme
positions in the action; others are spaced so that the time interval between key
frames is not too great. More key frames are specified for intricate motions than for
simple, slowly varying motions. Development of the key frames is generally the
responsibility of the senior animators, and often a separate animator is assigned
to each character in the animation.

In-betweens are the intermediate frames between the key frames. The total
number of frames, and hence the total number of in-betweens, needed for an
animation is determined by the display media that is to be used. Film requires
24 frames per second, and graphics terminals are refreshed at the rate of 60 or
more frames per second. Typically, time intervals for the motion are set up so that
there are from three to five in-betweens for each pair of key frames. Depending
on the speed specified for the motion, some key frames could be duplicated. As
an example, a 1-minute film sequence with no duplication requires a total of
1,440 frames. If five in-betweens are required for each pair of key frames, then
288 key frames would need to be developed.

There are several other tasks that may be required, depending on the appli-
cation. These additional tasks include motion verification, editing, and the pro-
duction and synchronization of a soundtrack. Many of the functions needed to
produce general animations are now computer-generated. Figures 2 and 3
show examples of computer-generated frames for animation sequences.

Computer Animation

368

F I G U R E 2
One frame from the award-winning computer-animated short film
Luxo Jr. The film was designed using a key-frame animation system
and cartoon animation techniques to provide lifelike actions of the
lamps. Final images were rendered with multiple light sources and
procedural texturing techniques. (Courtesy of Pixar. c© 1986 Pixar.)

F I G U R E 3
One frame from the short film Tin Toy, the first
computer-animated film to win an Oscar. Designed using a
key-frame animation system, the film also required extensive
facial-expression modeling. Final images were rendered using
procedural shading, self-shadowing techniques, motion blur, and
texture mapping. (Courtesy of Pixar. c© 1988 Pixar.)

3 Traditional Animation Techniques
Film animators use a variety of methods for depicting and emphasizing motion
sequences. These include object deformations, spacing between animation frames,
motion anticipation and follow-through, and action focusing.

One of the most important techniques for simulating acceleration effects,
particularly for nonrigid objects, is squash and stretch. Figure 4 shows how
this technique is used to emphasize the acceleration and deceleration of a bouncing
ball. As the ball accelerates, it begins to stretch. When the ball hits the floor and
stops, it is first compressed (squashed) and then stretched again as it accelerates
and bounces upwards.

Another technique used by film animators is timing, which refers to the spac-
ing between motion frames. A slower moving object is represented with more
closely spaced frames, and a faster moving object is displayed with fewer frames
over the path of the motion. This effect is illustrated in Figure 5, where the
position changes between frames increase as a bouncing ball moves faster.

Object movements can also be emphasized by creating preliminary actions
that indicate an anticipation of a coming motion. For example, a cartoon character

Stretch

Squash

F I G U R E 4
A bouncing-ball illustration of the “squash and stretch” technique
for emphasizing object acceleration.

0

F I G U R E 5
The position changes between motion frames for a bouncing ball
increase as the speed of the ball increases.

Computer Animation

369

might lean forward and rotate its body before starting to run; or a character might
perform a “windup” before throwing a ball. Similarly, follow-through actions
can be used to emphasize a previous motion. After throwing a ball, a character
can continue the arm swing back to its body; or a hat can fly off a character that
is stopped abruptly. An action also can be emphasized with staging, which refers
to any method for focusing on an important part of a scene, such as a character
hiding something.

4 General Computer-Animation Functions
Many software packages have been developed either for general animation
design or for performing specialized animation tasks. Typical animation functions
include managing object motions, generating views of objects, producing cam-
era motions, and the generation of in-between frames. Some animation packages,
such as Wavefront for example, provide special functions for both the overall ani-
mation design and the processing of individual objects. Others are special-purpose
packages for particular features of an animation, such as a system for generating
in-between frames or a system for figure animation.

A set of routines is often provided in a general animation package for stor-
ing and managing the object database. Object shapes and associated parameters
are stored and updated in the database. Other object functions include those
for generating the object motion and those for rendering the object surfaces.
Movements can be generated according to specified constraints using two-
dimensional or three-dimensional transformations. Standard functions can then
be applied to identify visible surfaces and apply the rendering algorithms.

Another typical function set simulates camera movements. Standard camera
motions are zooming, panning, and tilting. Finally, given the specification for the
key frames, the in-betweens can be generated automatically.

5 Computer-Animation Languages
We can develop routines to design and control animation sequences within a
general-purpose programming language, such as C, C++, Lisp, or Fortran, but
several specialized animation languages have been developed. These languages
typically include a graphics editor, a key-frame generator, an in-between genera-
tor, and standard graphics routines. The graphics editor allows an animator to
design and modify object shapes, using spline surfaces, constructive solid-
geometry methods, or other representation schemes.

An important task in an animation specification is scene description. This
includes the positioning of objects and light sources, defining the photometric
parameters (light-source intensities and surface illumination properties), and
setting the camera parameters (position, orientation, and lens characteristics).
Another standard function is action specification, which involves the layout of
motion paths for the objects and camera. We need the usual graphics routines:
viewing and perspective transformations, geometric transformations to generate
object movements as a function of accelerations or kinematic path specifications,
visible-surface identification, and the surface-rendering operations.

Key-frame systems were originally designed as a separate set of animation
routines for generating the in-betweens from the user-specified key frames. Now,
these routines are often a component in a more general animation package. In the
simplest case, each object in a scene is defined as a set of rigid bodies connected
at the joints and with a limited number of degrees of freedom. As an example, the

Computer Animation

370

Shoulder
Swivel

Elbow
Extension

Arm
Sweep

Yaw

Roll
Pitch

Base F I G U R E 6
Degrees of freedom for a stationary, single-armed robot.

single-armed robot in Figure 6 has 6 degrees of freedom, which are referred
to as arm sweep, shoulder swivel, elbow extension, pitch, yaw, and roll. We can
extend the number of degrees of freedom for this robot arm to 9 by allowing
three-dimensional translations for the base (Figure 7). If we also allow base
rotations, the robot arm can have a total of 12 degrees of freedom. The human
body, in comparison, has more than 200 degrees of freedom.

F I G U R E 7
Translational and rotational degrees of
freedom for the base of the robot arm.

Parameterized systems allow object motion characteristics to be specified as
part of the object definitions. The adjustable parameters control such object charac-
teristics as degrees of freedom, motion limitations, and allowable shape changes.

Scripting systems allow object specifications and animation sequences to be
defined with a user-input script. From the script, a library of various objects and
motions can be constructed.

6 Key-Frame Systems
A set of in-betweens can be generated from the specification of two (or more)
key frames using a key-frame system. Motion paths can be given with a kinematic
description as a set of spline curves, or the motions can be physically based by
specifying the forces acting on the objects to be animated.

For complex scenes, we can separate the frames into individual components
or objects called cels (celluloid transparencies). This term developed from cartoon-
animation techniques where the background and each character in a scene were
placed on a separate transparency. Then, with the transparencies stacked in the
order from background to foreground, they were photographed to obtain the com-
pleted frame. The specified animation paths are then used to obtain the next cel
for each character, where the positions are interpolated from the key-frame times.

With complex object transformations, the shapes of objects may change over
time. Examples are clothes, facial features, magnified detail, evolving shapes, and
exploding or disintegrating objects. For surfaces described with polygon meshes,
these changes can result in significant changes in polygon shape such that the
number of edges in a polygon could be different from one frame to the next.
These changes are incorporated into the development of the in-between frames
by adding or subtracting polygon edges according to the requirements of the
defining key frames.

Morphing
Transformation of object shapes from one form to another is termed morphing,
which is a shortened form of “metamorphosing.” An animator can model morph-
ing by transitioning polygon shapes through the in-betweens from one key frame
to the next.

Computer Animation

371

Given two key frames, each with a different number of line segments speci-
fying an object transformation, we can first adjust the object specification in one
of the frames so that the number of polygon edges (or the number of polygon
vertices) is the same for the two frames. This preprocessing step is illustrated in
Figure 8. A straight-line segment in key frame k is transformed into two line
segments in key frame k + 1. Because key frame k + 1 has an extra vertex, we add
a vertex between vertices 1 and 2 in key frame k to balance the number of ver-
tices (and edges) in the two key frames. Using linear interpolation to generate the
in-betweens, we transition the added vertex in key frame k into vertex 3′ along
the straight-line path shown in Figure 9. An example of a triangle linearly
expanding into a quadrilateral is given in Figure 10.

We can state general preprocessing rules for equalizing key frames in terms of
either the number of edges or the number of vertices to be added to a key frame. We
first consider equalizing the edge count, where parameters Lk and Lk+1 denote the
number of line segments in two consecutive frames. The maximum and minimum
number of lines to be equalized can be determined as

Lmax = max(Lk , Lk+1), Lmin = min(Lk , Lk+1) (1)

Next we compute the following two quantities:

Ne = Lmax mod Lmin

Ns = int
(

Lmax

Lmin

) (2)

1

2

Key
Frame k

1�

2�

3�

Key
Frame k � 1

F I G U R E 8
An edge with vertex positions 1 and 2 in key frame k evolves
into two connected edges in key frame k + 1.

1
1�

3�

2�

2 Halfway
FrameKey

Frame
k

Key
Frame
k � 1

Added
point

F I G U R E 9
Linear interpolation for transforming a line segment in key
frame k into two connected line segments in key frame k + 1.

Halfway
Frame

Key
Frame

k
Key

Frame
k � 1

added
point

F I G U R E 1 0
Linear interpolation for transforming a triangle into a quadrilateral.

Computer Animation

372

The preprocessing steps for edge equalization are then accomplished with the
following two procedures:

1. Divide Ne edges of keyframemin into Ns + 1 sections.
2. Divide the remaining lines of keyframemin into Ns sections.

As an example, if Lk = 15 and Lk+1 = 11, we would divide four lines of keyframek+1
into two sections each. The remaining lines of keyframek+1 are left intact.

If we equalize the vertex count, we can use parameters Vk and Vk+1 to
denote the number of vertices in the two consecutive key frames. In this case,
we determine the maximum and minimum number of vertices as

Vmax = max(Vk , Vk+1), Vmin = min(Vk , Vk+1) (3)

Then we compute the following two values:

Nls = (Vmax − 1) mod (Vmin − 1)

Np = int
(

Vmax − 1
Vmin − 1

) (4)

These two quantities are then used to perform vertex equalization with the fol-
lowing procedures:

1. Add Np points to Nls line sections of keyframemin.
2. Add Np − 1 points to the remaining edges of keyframemin.

For the triangle-to-quadrilateral example, Vk = 3 and Vk+1 = 4. Both Nls and Np

are 1, so we would add one point to one edge of keyframek . No points would be
added to the remaining lines of keyframek .

Simulating Accelerations
Curve-fitting techniques are often used to specify the animation paths between
key frames. Given the vertex positions at the key frames, we can fit the positions
with linear or nonlinear paths. Figure 11 illustrates a nonlinear fit of key-
frame positions. To simulate accelerations, we can adjust the time spacing for the
in-betweens.

If the motion is to occur at constant speed (zero acceleration), we use equal-
interval time spacing for the in-betweens. For instance, with n in-betweens and

Key
Frame

k

In-
Between

Key
Frame
k � 2Key

Frame
k � 1

F I G U R E 1 1
Fitting key-frame vertex positions with
nonlinear splines.

Computer Animation

373

F I G U R E 1 2
In-between positions for motion at
constant speed. t1 t2�t

t

key-frame times of t1 and t2 (Figure 12), the time interval between the key
frames is divided into n+1 equal subintervals, yielding an in-between spacing of

�t = t2 − t1
n + 1

(5)

The time for the j th in-between is
tB j = t1 + j�t, j = 1, 2, . . . , n (6)

and this time value is used to calculate coordinate positions, color, and other
physical parameters for that frame of the motion.

Speed changes (nonzero accelerations) are usually necessary at some point in
an animation film or cartoon, particularly at the beginning and end of a motion
sequence. The startup and slowdown portions of an animation path are often
modeled with spline or trigonometric functions, but parabolic and cubic time
functions have been applied to acceleration modeling. Animation packages com-
monly furnish trigonometric functions for simulating accelerations.

To model increasing speed (positive acceleration), we want the time spacing
between frames to increase so that greater changes in position occur as the object
moves faster. We can obtain an increasing size for the time interval with the
function

1 − cos θ , 0 < θ < π/2
For n in-betweens, the time for the j th in-between would then be calculated as

tB j = t1 + �t
[

1 − cos
jπ

2(n + 1)

]

, j = 1, 2, . . . , n (7)

where �t is the time difference between the two key frames. Figure 13 gives
a plot of the trigonometric acceleration function and the in-between spacing for
n = 5.

We can model decreasing speed (deceleration) using the function sin θ , with
0 < θ < π/2. The time position of an in-between is then determined as

tB j = t1 + �t sin
jπ

2(n + 1)
, j = 1, 2, . . . , n (8)

t1

tB1 tB5

t

0.5

0 j1

1.0

1 – cos u

2 3 4 5

cos u

F I G U R E 1 3
A trigonometric acceleration function and the corresponding in-between spacing for n = 5 and θ = j π/12 in
Equation 7, producing increased coordinate changes as the object moves through each time interval.

Computer Animation

374

t1 t2

tB1 tB5

t

0.5

0 j1

1.0

sinu

2 3 4 5

F I G U R E 1 4
A trigonometric deceleration function and the corresponding in-between spacing for n = 5 and θ = j π/12 in
Equation 8, producing decreased coordinate changes as the object moves through each time interval.

A plot of this function and the decreasing size of the time intervals is shown in
Figure 14 for five in-betweens.

Often, motions contain both speedups and slowdowns. We can model a com-
bination of increasing–decreasing speed by first increasing the in-between time
spacing and then decreasing this spacing. A function to accomplish these time
changes is

1
2
(1 − cos θ), 0 < θ < π/2

The time for the j th in-between is now calculated as

tB j = t1 + �t
{

1 − cos[jπ/(n + 1)]
2

}

, j = 1, 2, . . . , n (9)

with �t denoting the time difference between the two key frames. Time intervals
for a moving object first increase and then decrease, as shown in Figure 15.

t1 t2

tB1 tB5

t

0.5

0 j1

�0.5

�1.0

1.0

2 3 4 5

cosu

1� cosu
2

F I G U R E 1 5
The trigonometric accelerate–decelerate function (1 − cos θ)/2 and the corresponding in-between spacing for
n = 5 in Equation 9.

Computer Animation

375

Processing the in-betweens is simplified by initially modeling “skeleton”
(wire-frame) objects so that motion sequences can be interactively adjusted. After
the animation sequence is completely defined, objects can be fully rendered.

7 Motion Specifications
General methods for describing an animation sequence range from an explicit
specification of the motion paths to a description of the interactions that produce
the motions. Thus, we could define how an animation is to take place by giving
the transformation parameters, the motion path parameters, the forces that are to
act on objects, or the details of how objects interact to produce motion.

Direct Motion Specification
The most straightforward method for defining an animation is direct motion spec-
ification of the geometric-transformation parameters. Here, we explicitly set the
values for the rotation angles and translation vectors. Then the geometric trans-
formation matrices are applied to transform coordinate positions. Alternatively,
we could use an approximating equation involving these parameters to specify
certain kinds of motions. We can approximate the path of a bouncing ball, for
instance, with a damped, rectified, sine curve (Figure 16):

y(x) = A| sin(ωx + θ0)|e−kx (10)

where A is the initial amplitude (height of the ball above the ground), ω is the
angular frequency, θ0 is the phase angle, and k is the damping constant.
This method for motion specification is particularly useful for simple user-
programmed animation sequences.

Goal-Directed Systems
At the opposite extreme, we can specify the motions that are to take place in gen-
eral terms that abstractly describe the actions in terms of the final results. In other
words, an animation is specified in terms of the final state of the movements. These
systems are referred to as goal-directed, since values for the motion parameters are
determined from the goals of the animation. For example, we could specify that

F I G U R E 1 6
Approximating the motion of a
bouncing ball with a damped sine
function (Eq. 10).

x

y

Computer Animation

376

we want an object to “walk” or to “run” to a particular destination; or we could
state that we want an object to “pick up” some other specified object. The input
directives are then interpreted in terms of component motions that will accomplish
the described task. Human motions, for instance, can be defined as a hierarchical
structure of submotions for the torso, limbs, and so forth. Thus, when a goal, such
as “walk to the door” is given, the movements required of the torso and limbs to
accomplish this action are calculated.

Kinematics and Dynamics
We can also construct animation sequences using kinematic or dynamic descrip-
tions. With a kinematic description, we specify the animation by giving motion
parameters (position, velocity, and acceleration) without reference to causes or
goals of the motion. For constant velocity (zero acceleration), we designate the
motions of rigid bodies in a scene by giving an initial position and velocity vec-
tor for each object. For example, if a velocity is specified as (3, 0, −4) km per
sec, then this vector gives the direction for the straight-line motion path and the
speed (magnitude of velocity) is calculated as 5 km per sec. If we also specify
accelerations (rate of change of velocity), we can generate speedups, slowdowns,
and curved motion paths. Kinematic specification of a motion can also be given
by simply describing the motion path. This is often accomplished using spline
curves.

An alternate approach is to use inverse kinematics. Here, we specify the initial
and final positions of objects at specified times and the motion parameters are
computed by the system. For example, assuming zero acceleration, we can deter-
mine the constant velocity that will accomplish the movement of an object from
the initial position to the final position. This method is often used with complex
objects by giving the positions and orientations of an end node of an object, such
as a hand or a foot. The system then determines the motion parameters of other
nodes to accomplish the desired motion.

Dynamic descriptions, on the other hand, require the specification of the forces
that produce the velocities and accelerations. The description of object behavior in
terms of the influence of forces is generally referred to as physically based modeling.
Examples of forces affecting object motion include electromagnetic, gravitational,
frictional, and other mechanical forces.

Object motions are obtained from the force equations describing physical
laws, such as Newton’s laws of motion for gravitational and frictional processes,
Euler or Navier-Stokes equations describing fluid flow, and Maxwell’s equations
for electromagnetic forces. For example, the general form of Newton’s second law
for a particle of mass m is

F = d
dt

(mv) (11)

where F is the force vector and v is the velocity vector. If mass is constant, we solve
the equation F = ma, with a representing the acceleration vector. Otherwise, mass
is a function of time, as in relativistic motions or the motions of space vehicles
that consume measurable amounts of fuel per unit time. We can also use inverse
dynamics to obtain the forces, given the initial and final positions of objects and
the type of motion required.

Applications of physically based modeling include complex rigid-body sys-
tems and such nonrigid systems as cloth and plastic materials. Typically, numer-
ical methods are used to obtain the motion parameters incrementally from the
dynamical equations using initial conditions or boundary values.

Computer Animation

377

8 Character Animation
Animation of simple objects is relatively straightforward. When we consider
the animation of more complex figures such as humans or animals, however, it
becomes much more difficult to create realistic animation. Consider the animation
of walking or running human (or humanoid) characters. Based upon observations
in their own lives of walking or running people, viewers will expect to see ani-
mated characters move in particular ways. If an animated character’s movement
doesn’t match this expectation, the believability of the character may suffer. Thus,
much of the work involved in character animation is focused on creating believ-
able movements.

Articulated Figure Animation
A basic technique for animating people, animals, insects, and other critters is to
model them as articulated figures, which are hierarchical structures composed of
a set of rigid links that are connected at rotary joints (Figure 17). In less formal
terms, this just means that we model animate objects as moving stick figures, or
simplified skeletons, that can later be wrapped with surfaces representing skin,
hair, fur, feathers, clothes, or other outer coverings.

F I G U R E 1 7
A simple articulated figure with nine
joints and twelve connecting links, not
counting the oval head.

The connecting points, or hinges, for an articulated figure are placed at the
shoulders, hips, knees, and other skeletal joints, which travel along specified
motion paths as the body moves. For example, when a motion is specified for an
object, the shoulder automatically moves in a certain way and, as the shoulder
moves, the arms move. Different types of movement, such as walking, running,
or jumping, are defined and associated with particular motions for the joints and
connecting links.

A series of walking leg motions, for instance, might be defined as in
Figure 18. The hip joint is translated forward along a horizontal line, while
the connecting links perform a series of movements about the hip, knee, and
angle joints. Starting with a straight leg [Figure 18(a)], the first motion is a knee
bend as the hip moves forward [Figure 18(b)]. Then the leg swings forward,
returns to the vertical position, and swings back, as shown in Figures 18(c),
(d), and (e). The final motions are a wide swing back and a return to the straight

(a) (b) (c) (d) (e) (f) (g)

Hip
Joint

F I G U R E 1 8
Possible motions for a set of connected links representing a walking leg.

Computer Animation

378

vertical position, as in Figures 18(f) and (g). This motion cycle is repeated for
the duration of the animation as the figure moves over a specified distance or time
interval.

As a figure moves, other movements are incorporated into the various joints.
A sinusoidal motion, often with varying amplitude, can be applied to the hips so
that they move about on the torso. Similarly, a rolling or rocking motion can be
imparted to the shoulders, and the head can bob up and down.

Both kinematic-motion descriptions and inverse kinematics are used in figure
animations. Specifying the joint motions is generally an easier task, but inverse
kinematics can be useful for producing simple motion over arbitrary terrain. For
a complicated figure, inverse kinematics may not produce a unique animation
sequence: Many different rotational motions may be possible for a given set of
initial and final conditions. In such cases, a unique solution may be possible by
adding more constraints, such as conservation of momentum, to the system.

Motion Capture
An alternative to determining the motion of a character computationally is to
digitally record the movement of a live actor and to base the movement of an
animated character on that information. This technique, known as motion capture
or mo-cap, can be used when the movement of the character is predetermined
(as in a scripted scene). The animated character will perform the same series of
movements as the live actor.

The classic motion capture technique involves placing a set of markers at
strategic positions on the actor’s body, such as the arms, legs, hands, feet, and
joints. It is possible to place the markers directly on the actor, but more commonly
they are affixed to a special skintight body suit worn by the actor. The actor is
them filmed performing the scene. Image processing techniques are then used
to identify the positions of the markers in each frame of the film, and their posi-
tions are translated to coordinates. These coordinates are used to determine the
positioning of the body of the animated character. The movement of each marker
from frame to frame in the film is tracked and used to control the corresponding
movement of the animated character.

To accurately determine the positions of the markers, the scene must be filmed
by multiple cameras placed at fixed positions. The digitized marker data from each
recording can then be used to triangulate the position of each marker in three
dimensions. Typical motion capture systems will use up to two dozen cameras,
but systems with several hundred cameras exist.

Optical motion capture systems rely on the reflection of light from a marker
into the camera. These can be relatively simple passive systems using photo-
reflective markers that reflect illumination from special lights placed near the
cameras, or more advanced active systems in which the markers are powered
and emit light. Active systems can be constructed so that the markers illuminate
in a pattern or sequence, which allows each marker to be uniquely identified in
each frame of the recording, simplifying the tracking process.

Non-optical systems rely on the direct transmission of position information
from the markers to a recording device. Some non-optical systems use inertial sen-
sors that provide gyroscope-based position and orientation information. Others
use magnetic sensors that measure changes in magnetic flux. A series of transmit-
ters placed around the stage generate magnetic fields that induce current in the
magnetic sensors; that information is then transmitted to receivers.

Some motion capture systems record more than just the gross movements
of the parts of the actor’s body. It is possible to record even the actor’s

Computer Animation

379

facial movements. Often called performance capture systems, these typically use a
camera trained on the actor’s face and small light-emitting diode (LED) lights
that illuminate the face. Small photoreflective markers attached to the face reflect
the light from the LEDs and allow the camera to capture the small movements of
the muscles of the face, which can then be used to create realistic facial animation
on a computer-generated character.

9 Periodic Motions
When we construct an animation with repeated motion patterns, such as a rotat-

A typical example of an undersampled periodic-motion display is the wagon
wheel in a Western movie that appears to be turning in the wrong direction.
Figure 19 illustrates one complete cycle in the rotation of a wagon wheel with
one red spoke that makes 18 clockwise revolutions per second. If this motion is
recorded on film at the standard motion-picture projection rate of 24 frames per
second, then the first five frames depicting this motion would be as shown in
Figure 20. Because the wheel completes 3

4 of a turn every 1
24 of a second, only

one animation frame is generated per cycle, and the wheel thus appears to be
rotating in the opposite (counterclockwise) direction.

In a computer-generated animation, we can control the sampling rate in a
periodic motion by adjusting the motion parameters. For example, we can set the

(a)
0 sec.

(b)
1/72 sec.

(c)
1/36 sec.

(d)
1/24 sec.

(e)
1/18 sec.

F I G U R E 1 9
Five positions for a red spoke during one cycle of a wheel motion that is turning at the rate of 18 revolutions per
second.

Frame 0
0 sec.

Frame 1
1/24 sec.

Frame 2
2/24 sec.

Frame 3
3/24 sec.

Frame 4
4/24 sec.

F I G U R E 2 0
The first five film frames of the rotating wheel in Figure 19 produced at the rate of 24 frames per second.

Computer Animation

ing object, we need to be sure that the motion is sampled frequently enough to
represent the movements correctly. In other words, the motion must be synchro-
nized with the frame-generation rate so that we display enough frames per cycle
to show the true motion. Otherwise, the animation may be displayed incorrectly.

380

angular increment for the motion of a rotating object so that multiple frames are
generated in each revolution. Thus, a 3◦ increment for a rotation angle produces
120 motion steps during one revolution, and a 4◦ increment generates 90 steps.
For faster motion, larger rotational steps could be used, so long as the number
of samples per cycle is not too small and the motion is clearly displayed. When
complex objects are to be animated, we also must take into account the effect
that the frame construction time might have on the refresh rate, as discussed in
Section 1. The motion of a complex object can be much slower than we want it
to be if it takes too long to construct each frame of the animation.

Another factor that we need to consider in the display of a repeated motion

10 OpenGL Animation Procedures

Double-buffering operations, if available, are activated using the following
GLUT command:

glutInitDisplayMode (GLUT_DOUBLE);

This provides two buffers, called the front buffer and the back buffer, that we can use
alternately to refresh the screen display. While one buffer is acting as the refresh
buffer for the current display window, the next frame of an animation can be
constructed in the other buffer. We specify when the roles of the two buffers are
to be interchanged using

glutSwapBuffers ();

To determine whether double-buffer operations are available on a system, we
can issue the following query:

glGetBooleanv (GL_DOUBLEBUFFER, status);

A value of GL TRUE is returned to array parameter status if both front and back
buffers are available on a system. Otherwise, the returned value is GL FALSE.

For a continuous animation, we can also use

glutIdleFunc (animationFcn);

where parameter animationFcn can be assigned the name of a procedure that is
to perform the operations for incrementing the animation parameters. This pro-
cedure is continuously executed whenever there are no display-window events
that must be processed. To disable the glutIdleFunc, we set its argument to the
value NULL or the value 0.

An example animation program is given in the following code, which con-
tinuously rotates a regular hexagon in the xy plane about the z axis. The origin of

Computer Animation

is the effect of round-off in the calculations for the motion parameters. We can
reset parameter values periodically to prevent the accumulated error from pro-
ducing erratic motions. For a continuous rotation, we could reset parameter val-
ues once every cycle (360º).

Raster operations and color-index assignment functions are available in the core
library, and routines for changing color-table values are provided in GLUT.
Other raster-animation operations are available only as GLUT routines because
they depend on the window system in use. In addition, computer-animation fea-
tures such as double buffering may not be included in some hardware systems.

381

three-dimensional screen coordinates is placed at the center of the display win-
dow so that the z axis passes through this center position. In procedure init,
we use a display list to set up the description of the regular hexagon, whose
center position is originally at the screen-coordinate position (150, 150) with a
radius (distance from the polygon center to any vertex) of 100 pixels. In the dis-
play function, displayHex, we specify an initial 0◦ rotation about the z axis
and invoke the glutSwapBuffers routine. To activate the rotation, we use pro-
cedure mouseFcn, which continually increments the rotation angle by 3◦ once
we press the middle mouse button. The calculation of the incremented rota-
tion angle is performed in procedure rotateHex, which is called by the
glutIdleFunc routine in procedure mouseFcn. We stop the rotation by press-
ing the right mouse button, which causes the glutIdleFunc to be invoked with
a NULL argument.

#include <GL/glut.h>
#include <math.h>
#include <stdlib.h>

const double TWO_PI = 6.2831853;

GLsizei winWidth = 500, winHeight = 500; // Initial display window size.
GLuint regHex; // Define name for display list.
static GLfloat rotTheta = 0.0;

class scrPt {
public:

GLint x, y;
};

static void init (void)
{

scrPt hexVertex;
GLdouble hexTheta;
GLint k;

glClearColor (1.0, 1.0, 1.0, 0.0);

/* Set up a display list for a red regular hexagon.
* Vertices for the hexagon are six equally spaced
* points around the circumference of a circle.
*/
regHex = glGenLists (1);
glNewList (regHex, GL_COMPILE);

glColor3f (1.0, 0.0, 0.0);
glBegin (GL_POLYGON);

for (k = 0; k < 6; k++) {
hexTheta = TWO_PI * k / 6;
hexVertex.x = 150 + 100 * cos (hexTheta);
hexVertex.y = 150 + 100 * sin (hexTheta);
glVertex2i (hexVertex.x, hexVertex.y);

}
glEnd ();

glEndList ();
}

Computer Animation

382

void displayHex (void)
{

glClear (GL_COLOR_BUFFER_BIT);

glPushMatrix ();
glRotatef (rotTheta, 0.0, 0.0, 1.0);
glCallList (regHex);
glPopMatrix ();

glutSwapBuffers ();

glFlush ();
}

void rotateHex (void)
{

rotTheta += 3.0;
if (rotTheta > 360.0)

rotTheta -= 360.0;

glutPostRedisplay ();
}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

glViewport (0, 0, (GLsizei) newWidth, (GLsizei) newHeight);

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (-320.0, 320.0, -320.0, 320.0);

glMatrixMode (GL_MODELVIEW);
glLoadIdentity ();

glClear (GL_COLOR_BUFFER_BIT);
}

void mouseFcn (GLint button, GLint action, GLint x, GLint y)
{

switch (button) {
case GLUT_MIDDLE_BUTTON: // Start the rotation.

if (action == GLUT_DOWN)
glutIdleFunc (rotateHex);

break;
case GLUT_RIGHT_BUTTON: // Stop the rotation.

if (action == GLUT_DOWN)
glutIdleFunc (NULL);

break;
default:

break;
}

}

Computer Animation

383

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
glutInitWindowPosition (150, 150);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Animation Example");

init ();
glutDisplayFunc (displayHex);
glutReshapeFunc (winReshapeFcn);
glutMouseFunc (mouseFcn);

glutMainLoop ();
}

11 Summary
An animation sequence can be constructed frame by frame, or it can be generated
in real time. When separate frames of an animation are constructed and stored,
the frames can later be transferred to film or displayed in rapid succession on a
video monitor. Animations involving complex scenes and motions are commonly
produced one frame at a time, while simpler motion sequences are displayed in
real time.

On a raster system, double-buffering methods can be used to facilitate motion
displays. One buffer is used to refresh the screen, while a second buffer is being
loaded with the screen values for the next frame of the motion. Then the roles of
the two buffers are interchanged, usually at the end of a refresh cycle.

Another raster method for displaying an animation is to perform motion
sequences using block transfers of pixel values. Translations are accomplished by
a simple move of a rectangular block of pixel colors from one frame-buffer position
to another. And rotations in 90◦ increments can be performed with combinations
of translations and row-column interchanges within the pixel array.

Color-table methods can be used for simple raster animations by storing an
image of an object at multiple locations in the frame buffer, using different color-
table values. One image is stored in the foreground color, and the copies of the
image at the other locations are assigned a background color. By rapidly inter-
changing the foreground and background color values stored in the color table,
we can display the object at various screen positions.

Several developmental stages can be used to produce an animation, start-
ing with the storyboard, object definitions, and specification of key frames. The
storyboard is an outline of the action, and the key frames define the details of the
object motions for selected positions in the animation. Once the key frames have
been established, in-between frames are generated to construct a smooth motion
from one key frame to the next. A computer animation can involve motion spec-
ifications for the “camera,” as well as motion paths for the objects and characters
involved in the animation.

Various techniques have been developed for simulating and emphasizing
motion effects. Squash and stretch effects are standard methods for stressing

Computer Animation

384

	Interactive Input Methods and Graphical User Interfaces
	Computer Animation

